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Abstract

Background

Identifying individuals at risk for developing Alzheimer disease (AD) is of utmost importance.

Although genetic studies have identified AD-associated SNPs in APOE and other genes,

genetic information has not been integrated into an epidemiological framework for risk

prediction.

Methods and findings

Using genotype data from 17,008 AD cases and 37,154 controls from the International

Genomics of Alzheimer’s Project (IGAP Stage 1), we identified AD-associated SNPs (at

p < 10−5). We then integrated these AD-associated SNPs into a Cox proportional hazard

model using genotype data from a subset of 6,409 AD patients and 9,386 older controls

from Phase 1 of the Alzheimer’s Disease Genetics Consortium (ADGC), providing a poly-

genic hazard score (PHS) for each participant. By combining population-based incidence

rates and the genotype-derived PHS for each individual, we derived estimates of instanta-

neous risk for developing AD, based on genotype and age, and tested replication in multi-

ple independent cohorts (ADGC Phase 2, National Institute on Aging Alzheimer’s Disease

Center [NIA ADC], and Alzheimer’s Disease Neuroimaging Initiative [ADNI], total n =

20,680). Within the ADGC Phase 1 cohort, individuals in the highest PHS quartile devel-

oped AD at a considerably lower age and had the highest yearly AD incidence rate.

Among APOE ε3/3 individuals, the PHS modified expected age of AD onset by more than

10 y between the lowest and highest deciles (hazard ratio 3.34, 95% CI 2.62–4.24, p = 1.0

× 10−22). In independent cohorts, the PHS strongly predicted empirical age of AD onset

(ADGC Phase 2, r = 0.90, p = 1.1 × 10−26) and longitudinal progression from normal aging

to AD (NIA ADC, Cochran–Armitage trend test, p = 1.5 × 10−10), and was associated with

neuropathology (NIA ADC, Braak stage of neurofibrillary tangles, p = 3.9 × 10−6, and Con-

sortium to Establish a Registry for Alzheimer’s Disease score for neuritic plaques, p = 6.8

× 10−6) and in vivo markers of AD neurodegeneration (ADNI, volume loss within the ento-

rhinal cortex, p = 6.3 × 10−6, and hippocampus, p = 7.9 × 10−5). Additional prospective val-

idation of these results in non-US, non-white, and prospective community-based cohorts

is necessary before clinical use.

Conclusions

We have developed a PHS for quantifying individual differences in age-specific genetic risk

for AD. Within the cohorts studied here, polygenic architecture plays an important role in

modifying AD risk beyond APOE. With thorough validation, quantification of inherited

genetic variation may prove useful for stratifying AD risk and as an enrichment strategy in

therapeutic trials.
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Author summary

Why was this study done?

• Across the United States, late-onset Alzheimer’s disease (AD) is the most common form

of dementia.

• There is a strong need for in vivo markers for AD risk stratification and cohort enrich-

ment in therapeutic trials.

• Although numerous studies have identified several genetic risk factors, including the ε4

allele of apolipoprotein E (APOE), genetic variants have not been integrated with genetic

epidemiology for quantifying age of AD onset.

What did the researchers do and find?

• Using genotype data from over 70,000 AD patients and normal elderly controls, we eval-

uated the feasibility of combining AD-associated SNPs and APOE status into a continu-

ous measure—a polygenic hazard score (PHS)—for predicting the age-specific risk for

developing AD.

• Using a survival model framework, we integrated single nucleotide polymorphisms

associated with increased risk for AD into a PHS for each participant. By combining

population-based incidence rates and the genotype-derived PHS for each individual, we

derived estimates of instantaneous risk for developing AD, based on genotype and age,

and tested replication in two independent cohorts.

• Individuals in the highest PHS quartile developed AD at a considerably lower age and

had the highest yearly AD incidence rate.

• In independent cohorts, we found that the PHS strongly predicted empirical age of AD

onset and longitudinal progression from normal aging to AD, and associated strongly

with neuropathology and in vivo markers of AD neurodegeneration.

• Additional prospective validation of these results on non-US, non-white, and prospec-

tive community-based cohorts is necessary before clinical use.

What do these findings mean?

• Genetic variants can be integrated within an epidemiology framework to derive a poly-

genic score that can quantify individual differences in age-specific genetic risk for AD,

beyond APOE.

• Quantification of inherited genetic variation may prove useful for AD risk stratification

and for therapeutic trials.

Introduction

Late-onset Alzheimer disease (AD), the most common form of dementia, places a large emo-

tional and economic burden on patients and society. With increasing health care expenditures

among cognitively impaired elderly individuals [1], identifying individuals at risk for

Polygenic hazard score for Alzheimer disease
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developing AD is of utmost importance for potential preventative and therapeutic strategies.

Inheritance of the ε4 allele of apolipoprotein E (APOE) on Chromosome 19q13 is the most sig-

nificant risk factor for developing late-onset AD [2]. APOE ε4 has a dose-dependent effect on

age of onset, increases AD risk 3-fold in heterozygotes and 15-fold in homozygotes, and is

implicated in 20%–25% of AD cases [3].

In addition to the single nucleotide polymorphism (SNP) in APOE, recent genome-wide

association studies (GWASs) have identified numerous AD-associated SNPs, most of which

have a small effect on disease risk [4,5]. Although no single polymorphism may be informative

clinically, a combination of APOE and non-APOE SNPs may help identify older individuals at

increased risk for AD. Despite their detection of novel AD-associated genes, GWAS findings

have not yet been incorporated into a genetic epidemiology framework for individualized risk

prediction.

Building on a prior approach evaluating GWAS-detected genetic variants for disease pre-

diction [6] and using a survival analysis framework, we tested the feasibility of combining AD-

associated SNPs and APOE status into a continuous-measure polygenic hazard score (PHS)

for predicting the age-specific risk for developing AD. We assessed replication of the PHS

using several independent cohorts.

Methods

Participant samples

International genomics of Alzheimer’s project. To select AD-associated SNPs, we evalu-

ated publicly available AD GWAS summary statistic data (p-values and odds ratios) from the

International Genomics of Alzheimer’s Project (IGAP) (Stage 1; for additional details see S1

Appendix and [4]). For selecting AD-associated SNPs, we used IGAP Stage 1 data, from

17,008 AD cases and 37,154 controls drawn from four different consortia across North Amer-

ica and Europe (including the United States of America, England, France, Holland, and Ice-

land) with genotyped or imputed data at 7,055,881 SNPs (for a description of the AD cases and

controls within the IGAP Stage 1 sub-studies, please see Table 1 and [4]).

Alzheimer’s disease genetics consortium. To develop the survival model for the PHS, we

first evaluated age of onset and raw genotype data from 6,409 patients with clinically diagnosed

AD and 9,386 cognitively normal older individuals provided by the Alzheimer’s Disease

Genetics Consortium (ADGC) (Phase 1, a subset of the IGAP dataset), excluding individuals

from the National Institute of Aging Alzheimer’s Disease Center (NIA ADC) and Alzheimer’s

Disease Neuroimaging Initiative (ADNI) samples. To evaluate replication of the PHS, we used

an independent sample of 6,984 AD patients and 10,972 cognitively normal older individuals

from the ADGC Phase 2 cohort (Table 1). The genotype and phenotype data within the

ADGC datasets has been described in detail elsewhere [7,8]. Briefly, the ADGC Phase 1 and 2

Table 1. Demographic data for AD patients and older controls.

Characteristic IGAP ADGC Phase 1 ADGC Phase 2

AD patients Older controls AD patients Older controls AD patients Older controls

Total N 17,008 37,154 6,409 9,386 6,984 10,972

Mean age (SD) of onset (cases) or assessment (controls) 74.7 (8.0) 68.6 (8.5) 74.7 (7.7) 76.4 (8.1) 73.6 (7.3) 75.7 (8.6)

Percent female 63.0% 57.0% 61.0% 59.0% 57.6% 60.7%

Percent APOE ε4 carriers 59.0% 25.4% 51.6% 26.7% 56.0% 28.4%

ADGC, Alzheimer’s Disease Genetics Consortium; IGAP, International Genomics of Alzheimer’s Project; SD, standard deviation.

doi:10.1371/journal.pmed.1002258.t001

Polygenic hazard score for Alzheimer disease
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datasets (enrollment from 1984 to 2012) consist of case–control, prospective, and family-based

sub-studies of white participants with AD occurrence after age 60 y derived from the general

community and Alzheimer’s Disease Centers across the US. Participants with autosomal dom-

inant (APP, PSEN1, and PSEN2) mutations were excluded. All participants were genotyped

using commercially available high-density SNP microarrays from Illumina or Affymetrix.

Clinical diagnosis of AD within the ADGC sub-studies was established using NINCD-

S-ADRDA criteria for definite, probable, and possible AD [9]. For most participants, age of

AD onset was obtained from medical records and defined as the age when AD symptoms man-

ifested, as reported by the participant or an informant. For participants lacking age of onset,

age at ascertainment was used. Patients with an age at onset or age at death less than 60 y and

individuals of non-European ancestry were excluded from the analyses. All ADGC Phase 1

and 2 control participants were defined within individual sub-studies as cognitively normal

older adults at time of clinical assessment. The institutional review boards of all participating

institutions approved the procedures for all ADGC sub-studies. Written informed consent was

obtained from all participants or surrogates. For additional details regarding the ADGC data-

sets, please see [7,8].

National institute of aging Alzheimer’s disease centers. To assess longitudinal predic-

tion, we evaluated an ADGC-independent sample of 2,724 cognitively normal elderly indi-

viduals. Briefly, all participants were US based, evaluated at National Institute of Aging–

funded Alzheimer’s Disease Centers (data collection coordinated by the National Alzhei-

mer’s Coordinating Center [NACC]) and clinically followed for at least two years (enroll-

ment from 1984 to 2012, evaluation years were 2005 to 2016) [10]. Here, we focused on

older individuals defined at baseline as having an overall Clinical Dementia Rating score of

0.0. To assess the relationship between polygenic risk and neuropathology, we assessed 2,960

participants from the NIA ADC samples with genotype and neuropathological evaluations.

For the neuropathological variables, we examined the Braak stage for neurofibrillary tangles

(NFTs) (0, none; I–II, entorhinal; III–IV, limbic; and V–VI, isocortical) [11] and the Con-

sortium to Establish a Registry for Alzheimer’s Disease (CERAD) score for neuritic plaques

(none/sparse, moderate, or frequent) [12]. Finally, as an additional independent replication

sample, we evaluated all NIA ADC AD cases with genetic data who were classified at autopsy

as having a high level of AD neuropathological change (n = 361), based on the revised

National Institute of Aging–Alzheimer’s Association AD neuropathology criteria [13]. The

institutional review boards of all participating institutions approved the procedures for all

NIA ADC sub-studies. Written informed consent was obtained from all participants or

surrogates.

Alzheimer’s disease neuroimaging initiative. To assess the relationship between poly-

genic risk and in vivo biomarkers, we evaluated an ADGC-independent sample of 692 older

controls and participants with mild cognitive impairment or AD from the ADNI (see S1

Appendix). Briefly, the ADNI is a multicenter, multisite longitudinal study assessing clinical,

imaging, genetic, and biospecimen biomarkers from US-based participants through the pro-

cess of normal aging to early mild cognitive impairment, to late mild cognitive impairment, to

dementia or AD (see S1 Appendix). Here, we focused specifically on participants from ADNI

1 with cognitive, imaging, and cerebrospinal fluid (CSF) assessments from 2003 to 2010. In a

subset of ADNI 1 participants with available genotype data, we evaluated baseline CSF level of

Aβ1–42 and total tau, as well as longitudinal Clinical Dementia Rating Sum of Boxes (CDR-SB)

scores. In ADNI 1 participants with available genotype and quality-assured baseline and fol-

low-up MRI scans, we also assessed longitudinal subregional change in medial temporal lobe

volume (atrophy) on 2,471 serial T1-weighted MRI scans (for additional details see S1

Appendix).

Polygenic hazard score for Alzheimer disease
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Statistical analysis

We followed three steps to derive the PHS for predicting age of AD onset: (1) we defined the

set of associated SNPs, (2) we estimated hazard ratios for polygenic profiles, and (3) we calcu-

lated individualized absolute hazards (see S1 Appendix for a detailed description of these

steps).

Using the IGAP Stage 1 sample, we first identified a list of SNPs associated with increased

risk for AD, using a significance threshold of p< 10−5. Next, we evaluated all IGAP-detected

AD-associated SNPs within the ADGC Phase 1 case–control dataset. Using a stepwise pro-

cedure in survival analysis, we delineated the “final” list of SNPs for constructing the PHS

[14,15]. Specifically, using Cox proportional hazard models, we identified the top AD-asso-

ciated SNPs within the ADGC Phase 1 cohort (excluding NIA ADC and ADNI samples),

while controlling for the effects of gender, APOE variants, and the top five genetic principal

components (to control for the effects of population stratification). We utilized age of AD

onset and age of last clinical visit to estimate age-specific risks [16] and derived a PHS for

each participant. In each step of the stepwise procedure, the algorithm selected the one SNP

from the pool that most improved model prediction (i.e., minimizing the Martingale residu-

als); additional SNP inclusion that did not further minimize the residuals resulted in halting

of the SNP selection process. To prevent overfitting in this training step, we used 1,000×
bootstrapping for model averaging and estimating the hazard ratios for each selected SNP.

We assessed the proportional hazard assumption in the final model using graphical

comparisons.

To assess for replication, we first examined whether the predicted PHSs derived from the

ADGC Phase 1 cohort could stratify individuals into different risk strata within the ADGC

Phase 2 cohort. We next evaluated the relationship between predicted age of AD onset and

the empirical (actual) age of AD onset using cases from ADGC Phase 2. We binned risk

strata into percentile bins and calculated the mean of actual age of AD onset in that percen-

tile as the empirical age of AD onset. In a similar fashion, we additionally tested replication

within the NIA ADC subset classified at autopsy as having a high level of AD neuropatholog-

ical change [13].

Because case–control samples cannot provide the proper baseline hazard [17], we used

previously reported annualized incidence rates by age estimated from the general US popula-

tion [18]. For each participant, by combining the overall population-derived incidence rates

[18] and the genotype-derived PHS, we calculated the individual’s “instantaneous risk” for

developing AD, based on their genotype and age (for additional details see S1 Appendix). To

independently assess the predicted instantaneous risk, we evaluated longitudinal follow-up

data from 2,724 cognitively normal older individuals from the NIA ADC with at least 2 y of

clinical follow-up. We assessed the number of cognitively normal individuals progressing to

AD as a function of the predicted PHS risk strata and examined whether the predicted PHS-

derived incidence rate reflected the empirical progression rate using a Cochran–Armitage

trend test.

We examined the association between our PHS and established in vivo and pathological

markers of AD neurodegeneration. Using linear models, we assessed whether the PHS associ-

ated with Braak stage for NFTs and CERAD score for neuritic plaques, as well as CSF Aβ1–42

and CSF total tau. Using linear mixed effects models, we also investigated whether the PHS

was associated with longitudinal CDR-SB score and volume loss within the entorhinal cortex

and hippocampus. In all analyses, we co-varied for the effects of age and sex.

Polygenic hazard score for Alzheimer disease
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Results

Polygenic hazard score: Model development, relationship to APOE, and

independent replication

From the IGAP cohort, we found 1,854 SNPs associated with increased risk for AD at p<
10−5. Of these, using the Cox stepwise regression framework, we identified 31 SNPs, in addi-

tion to two APOE variants, within the ADGC cohort for constructing the polygenic model

(Table 2). Fig 1 illustrates the relative risk for developing AD using the ADGC Phase 1 case–

control cohort. The graphical comparisons among Kaplan–Meier estimations and Cox pro-

portional hazard models indicate that the proportional hazard assumption holds for the final

model (Fig 1).

Table 2. The selected 31 SNPs, their closest genes, their log hazard ratio estimates, and their conditional p-values in the final joint model, after

controlling for effects of gender and APOE variants.

SNP Chromosome Position Gene β (log HR) Conditional p-value in −log10

ε2 allele 19 APOE −0.47 >15.0

ε4 allele 19 APOE 1.03 >20.0

rs4266886 1 207685786 CR1 −0.09 2.7

rs61822977 1 207796065 CR1 −0.08 2.8

rs6733839 2 127892810 BIN1 −0.15 10.5

rs10202748 2 234003117 INPP5D −0.06 2.1

rs115124923 6 32510482 HLA-DRB5 0.17 7.4

rs115675626 6 32669833 HLA-DQB1 −0.11 3.2

rs1109581 6 47678182 GPR115 −0.07 2.6

rs17265593 7 37619922 BC043356 −0.23 3.6

rs2597283 7 37690507 BC043356 0.28 4.7

rs1476679 7 100004446 ZCWPW1 0.11 4.9

rs78571833 7 143122924 AL833583 0.14 3.8

rs12679874 8 27230819 PTK2B −0.09 4.2

rs2741342 8 27330096 CHRNA2 0.09 2.9

rs7831810 8 27430506 CLU 0.09 3.0

rs1532277 8 27466181 CLU 0.21 8.3

rs9331888 8 27468862 CLU 0.16 5.1

rs7920721 10 11720308 CR595071 −0.07 2.9

rs3740688 11 47380340 SPI1 0.07 2.8

rs7116190 11 59964992 MS4A6A 0.08 3.9

rs526904 11 85811364 PICALM −0.20 2.3

rs543293 11 85820077 PICALM 0.30 4.2

rs11218343 11 121435587 SORL1 0.18 2.8

rs6572869 14 53353454 FERMT2 −0.11 3.0

rs12590273 14 92934120 SLC24A4 0.10 3.5

rs7145100 14 107160690 abParts 0.08 2.0

rs74615166 15 64725490 TRIP4 −0.23 3.1

rs2526378 17 56404349 BZRAP1 0.09 4.9

rs117481827 19 1021627 C19orf6 −0.09 2.5

rs7408475 19 1050130 ABCA7 0.18 4.3

rs3752246 19 1056492 ABCA7 −0.25 8.4

rs7274581 20 55018260 CASS4 0.10 2.1

doi:10.1371/journal.pmed.1002258.t002
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To quantify the additional prediction provided by polygenic information beyond APOE, we

evaluated how the PHS modulates age of AD onset in APOE ε3/3 individuals. Among these

individuals, we found that age of AD onset can vary by more than 10 y, depending on poly-

genic risk. For example, for an APOE ε3/3 individual in the tenth decile (top 10%) of the PHS,

at 50% risk for meeting clinical criteria for AD diagnosis, the expected age of developing AD is

approximately 84 y (Fig 2); however, for an APOE ε3/3 individual in the first decile (bottom

10%) of the PHS, the expected age of developing AD is approximately 95 y (Fig 2). The hazard

ratio comparing the tenth decile to the first decile is 3.34 (95% CI 2.62–4.24, log rank test

p = 1.0 × 10−22). Similarly, we also evaluated the relationship between the PHS and the differ-

ent APOE alleles (ε2/3/4) (first figure in S1 Appendix). These findings show that, beyond

APOE, the polygenic architecture plays an integral role in affecting AD risk.

To assess replication, we applied the ADGC Phase 1–trained model to independent samples

from ADGC Phase 2. Using the empirical distributions, we found that the PHS successfully

stratified individuals from independent cohorts into different risk strata (Fig 3A). Among AD

cases in the ADGC Phase 2 cohort, we found that the predicted age of onset was strongly

Fig 1. Kaplan–Meier estimates and Cox proportional hazard model fits from the ADGC Phase 1 case–control dataset,

excluding NIA ADC and ADNI samples. The proportional hazard assumptions were checked based on graphical

comparisons between Kaplan–Meier estimations (dashed lines) and Cox proportional hazard models (solid lines). The 95%

confidence intervals of Kaplan–Meier estimations are also demonstrated (shaded with corresponding colors). The baseline

hazard (gray line) in this model is based on the mean of ADGC data. ADGC, Alzheimer’s Disease Genetics Consortium;

ADNI, Alzheimer’s Disease Neuroimaging Initiative; NIA ADC, National Institute on Aging Alzheimer’s Disease Center; PHS,

polygenic hazard score.

doi:10.1371/journal.pmed.1002258.g001
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associated with the empirical (actual) age of onset (binned in percentiles, r = 0.90,

p = 1.1 × 10−26; Fig 3B). Similarly, within the NIA ADC subset with a high level of AD neuro-

pathological change, we found that the PHS strongly predicted time to progression to neuro-

pathologically defined AD (Cox proportional hazard model, z = 11.8723, p = 2.8 × 10−32).

Predicting population risk of Alzheimer disease onset

To evaluate the risk for developing AD, combining the estimated hazard ratios from the

ADGC cohort, allele frequencies for each of the AD-associated SNPs from the 1000 Genomes

Project, and the disease incidence in the general US population [18], we generated population

baseline-corrected survival curves given an individual’s genetic profile and age (panels A and

B of second figure in S1 Appendix). We found that PHS status modifies both the risk for devel-

oping AD and the distribution of age of onset (panels A and B of second figure in S1

Appendix).

Given an individual’s genetic profile and age, the corrected survival proportion can be

translated directly into incidence rates (Fig 4; Tables 3 and S1). As previously reported in a

meta-analysis summarizing four studies from the US general population [18], the annualized

Fig 2. Kaplan–Meier estimates and Cox proportional hazard model fits among APOE ε3/3 individuals in the ADGC

Phase 1 dataset, excluding NIA ADC and ADNI samples. The solid lines represent the Cox fit, whereas the dashed lines

and shaded regions represent the Kaplan–Meier estimations with 95% confidence intervals. ADGC, Alzheimer’s Disease

Genetics Consortium; ADNI, Alzheimer’s Disease Neuroimaging Initiative; NIA ADC, National Institute on Aging Alzheimer’s

Disease Center; PHS, polygenic hazard score.

doi:10.1371/journal.pmed.1002258.g002

Polygenic hazard score for Alzheimer disease

PLOS Medicine | DOI:10.1371/journal.pmed.1002258 March 21, 2017 9 / 17



incidence rate represents the proportion (in percent) of individuals in a given risk stratum and

age who have not yet developed AD but will develop AD in the following year; thus, the annu-

alized incidence rate represents the instantaneous risk for developing AD conditional on hav-

ing survived up to that point in time. For example, for a cognitively normal 65-y-old

individual in the 80th percentile of the PHS, the incidence rate (per 100 person-years) would

be 0.29 at age 65 y, 1.22 at age 75 y, 5.03 at age 85 y, and 20.82 at age 95 y (Fig 4; Table 3); in

contrast, for a cognitively normal 65-y-old in the 20th percentile of the PHS, the incidence rate

would be 0.10 at age 65 y, 0.43 at age 75 y, 1.80 at age 85 y, and 7.43 at age 95 y (Fig 4; Table 3).

As independent validation, we examined whether the PHS-predicted incidence rate reflects

the empirical progression rate (from normal control to clinical AD) (Fig 5). We found that the

PHS-predicted incidence was strongly associated with empirical progression rates (Cochran–

Armitage trend test, p = 1.5 × 10−10).

Association of polygenic hazard score with known markers of Alzheimer

disease pathology

We found that the PHS was significantly associated with Braak stage of NFTs (β-coeffi-

cient = 0.115, standard error [SE] = 0.024, p-value = 3.9 × 10−6) and CERAD score for neuritic

plaques (β-coefficient = 0.105, SE = 0.023, p-value = 6.8 × 10−6). We additionally found that

the PHS was associated with worsening CDR-SB score over time (β-coefficient = 2.49,

SE = 0.38, p-value = 1.1 × 10−10), decreased CSF Aβ1–42 (reflecting increased intracranial Aβ
plaque load) (β-coefficient = −0.07, SE = 0.01, p-value = 1.28 × 10−7), increased CSF total tau

(β-coefficient = 0.03, SE = 0.01, p-value = 0.05), and greater volume loss within the entorhinal

cortex (β-coefficient = −0.022, SE = 0.005, p-value = 6.30 × 10−6) and hippocampus (β-coeffi-

cient = −0.021, SE = 0.005, p-value = 7.86 × 10−5).

Fig 3. Polygenic hazard score validation in ADGC Phase 2 cohort. (A) Risk stratification in ADGC Phase 2 cohort, using PHSs derived from ADGC

Phase 1 dataset. The dashed lines and shaded regions represent Kaplan–Meier estimations with 95% confidence intervals. (B) Predicted age of AD

onset as a function of empirical age of AD onset among cases in ADGC Phase 2 cohort. Prediction is based on the final survival model trained in the

ADGC Phase 1 dataset. AD, Alzheimer disease; ADGC, Alzheimer’s Disease Genetics Consortium; PHS, polygenic hazard score.

doi:10.1371/journal.pmed.1002258.g003
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Discussion

In this study, by integrating AD-associated SNPs from recent GWASs and disease incidence

estimates from the US population into a genetic epidemiology framework, we have developed

a novel PHS for quantifying individual differences in risk for developing AD, as a function of

genotype and age. The PHS systematically modified age of AD onset, and was associated with

known in vivo and pathological markers of AD neurodegeneration. In independent cohorts

(including a neuropathologically confirmed dataset), the PHS successfully predicted empirical

(actual) age of onset and longitudinal progression from normal aging to AD. Even among

individuals who do not carry the ε4 allele of APOE (the majority of the US population), we

found that polygenic information was useful for predicting age of AD onset.

Using a case–control design, prior work has combined GWAS-associated polymorphisms

and disease prediction models to predict risk for AD [19–24]. Rather than representing a con-

tinuous process where non-demented individuals progress to AD over time, the case–control

approach implicitly assumes that normal controls do not develop dementia and treats the dis-

ease process as a dichotomous variable where the goal is maximal discrimination between

Fig 4. Annualized incidence rates showing the instantaneous hazard as a function of polygenic hazard score

percentile and age. The gray line represents the population baseline estimate. Dashed lines represent incidence rates in

APOE ε4 carriers (dark red dashed line) and non-carriers (light blue dashed line) not associated with a PHS percentile. The

asterisk indicates that the baseline estimation is based on previously reported annualized incidence rates by age in the general

US population [18]. PHS, polygenic hazard score.

doi:10.1371/journal.pmed.1002258.g004
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diseased “cases” and healthy “controls.” Given the striking age dependence of AD, this

approach is clinically suboptimal for estimating the risk of AD. Building on prior genetic esti-

mates from the general population [2,25], we employed a survival analysis framework to inte-

grate AD-associated common variants with established population-based incidence [18] to

derive a continuous measure, the PHS. We note that the PHS can estimate individual differ-

ences in AD risk across a lifetime and can quantify the yearly incidence rate for developing

AD.

Table 3. Predicted annualized incidence rate (per 100 person-years) by age using polygenic hazard score.

Age (years) Population

baseline*
PHS 1st

percentile

(95% CI)

PHS 20th

percentile

(95% CI)

PHS 80th

percentile

(95% CI)

PHS 99th

percentile

(95% CI)

APOE ε4+ (95% CI) APOE ε4− (95% CI)

60 0.08 0.02 (0.01, 0.03) 0.04 (0.01, 0.08) 0.15 (0.04, 0.27) 0.61 (0.16, 1.06) 0.19 (0.18, 0.20) 0.06 (0.06, 0.70)

65 0.17 0.04 (0.01, 0.06) 0.09 (0.03, 0.16) 0.32 (0.09, 0.54) 1.24 (0.33, 2.15) 0.38 (0.36, 0.40) 0.13 (0.12, 0.13)

70 0.35 0.07 (0.02, 0.13) 0.19 (0.05, 0.32) 0.64 (0.18, 1.10) 2.53 (0.68, 4.38) 0.78 (0.74, 0.82) 0.26 (0.25, 0.27)

75 0.71 0.15 (0.05, 0.19) 0.38 (0.11, 0.65) 1.30 (0.36, 2.25) 5.15 (1.38, 8.91) 1.58 (1.51, 1.66) 0.53 (0.52, 0.55)

80 1.44 0.31 (0.26, 0.26) 0.77 (0.22, 1.32) 2.65 (0.74, 4.57) 10.47 (2.81, 18.13) 3.22 (3.06, 3.38) 1.08 (1.05, 1.11)

85 2.92 0.63 (0.19, 1.07) 1.57 (0.45, 2.68) 5.39 (1.50, 9.29) 21.30 (5.72, 36.88) 6.55 (6.23, 6.87) 2.20 (2.13, 2.27)

90 5.95 1.28 (0.38, 2.18) 3.19 (0.91, 5.46) 10.97 (3.05, 18.89) 43.32 (11.63, 75.00) 13.33 (12.68, 13.98) 4.48 (4.34, 4.61)

95 12.10 2.61 (0.78, 4.44) 6.48 (1.85, 11.10) 22.31 (6.20, 38.43) 88.11 (23.66, 100.00) 27.11 (25.79, 28.43) 9.10 (8.83, 9.38)

APOE ε4+ refers to individuals with at least one copy of the ε4 allele of APOE; APOE ε4− refers to individuals with no copies of the ε4 allele of APOE.

*US community-sampled population incidence proportion (percent per year) reported by [18].

doi:10.1371/journal.pmed.1002258.t003

Fig 5. Empirical progression rates observed in the NIA ADC longitudinal cohort as a function of

predicted incidence. Bars show 95% confidence intervals. NIA ADC, National Institute on Aging Alzheimer’s

Disease Center.

doi:10.1371/journal.pmed.1002258.g005
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These findings indicate that the lifetime risk of age of AD onset varies by polygenic profile.

For example, the annualized incidence rate (risk for developing AD in a given year) is consid-

erably lower for an 80-y-old individual in the 20th percentile of the PHS than for an 80-y-old

in the 99th percentile of the PHS (Fig 4; Table 3). Across the lifespan (panel B of second figure

in S1 Appendix), our results indicate that even individuals with low genetic risk (low PHS)

develop AD, but at a later peak age of onset. Certain loci (including APOE ε2) may “protect”

against AD by delaying, rather than preventing, disease onset.

Our polygenic results provide important predictive information beyond APOE. Among

APOE ε3/3 individuals, who constitute 70%–75% of all individuals diagnosed with late-onset

AD, age of onset varies by more than 10 y, depending on polygenic risk profile (Fig 2). At 60%

AD risk, APOE ε3/3 individuals in the first decile of the PHS have an expected age of onset of

85 y, whereas for individuals in the tenth decile of the PHS, the expected age of onset is greater

than 95 y. These findings are directly relevant to the general population, where APOE ε4

accounts for only a fraction of AD risk [3], and are consistent with prior work [26] indicating

that AD is a polygenic disease where non-APOE genetic variants contribute significantly to

disease etiology.

We found that the PHS strongly predicted age of AD onset within the ADGC Phase 2 data-

set and the NIA ADC neuropathology-confirmed subset, demonstrating independent replica-

tion of our polygenic score. Within the NIA ADC sample, the PHS robustly predicted

longitudinal progression from normal aging to AD, illustrating that polygenic information can

be used to identify the cognitively normal older individuals at highest risk for developing AD

(preclinical AD). We found a strong relationship between the PHS and increased tau-associ-

ated NFTs and amyloid plaques, suggesting that elevated genetic risk may make individuals

more susceptible to underlying AD pathology. Consistent with recent studies showing correla-

tions between AD polygenic risk scores and markers of AD neurodegeneration [22,23], our

PHS also demonstrated robust associations with CSF Aβ1–42 levels, longitudinal MRI measures

of medial temporal lobe volume loss, and longitudinal CDR-SB scores, illustrating that

increased genetic risk may increase the likelihood of clinical progression and developing neu-

rodegeneration measured in vivo.

From a clinical perspective, our genetic risk score may serve as a “risk factor” for accurately

identifying older individuals at greatest risk for developing AD, at a given age. Conceptually

similar to other polygenic risk scores (for a review of this topic see [27]) for assessing coronary

artery disease risk [28] and breast cancer risk [29], our PHS may help in predicting which indi-

viduals will test “positive” for clinical, CSF, or imaging markers of AD pathology. Importantly,

a continuous polygenic measure of AD genetic risk may provide an enrichment strategy for

prevention and therapeutic trials and could also be useful for predicting which individuals

may respond to therapy. From a disease management perspective, by providing an accurate

probabilistic assessment regarding the likelihood of AD neurodegeneration, determining a

“genomic profile” of AD may help initiate a dialogue on future planning. Finally, a similar

genetic epidemiology framework may be useful for quantifying the risk associated with numer-

ous other common diseases.

There are several limitations to our study. We primarily focused on individuals of European

descent. Given that AD incidence [30], genetic risk [25,31], and likely linkage disequilibrium

in African-American and Latino individuals is different from in white individuals, additional

work will be needed to develop a polygenic risk model in non-white (and non-US) popula-

tions. The majority of the participants evaluated in our study were recruited from specialized

memory clinics or AD research centers and may not be representative of the general US popu-

lation. In order to be clinically useful, we note that our PHS needs to be prospectively validated

in large community-based cohorts, preferably consisting of individuals from a range of

Polygenic hazard score for Alzheimer disease
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ethnicities. The previously reported population annualized incidence rates were not separately

provided for males and females [18]. Therefore, we could not report PHS annualized incidence

rates stratified by sex. We note that we primarily focused on genetic markers and thus did not

evaluate how other variables, such as environmental or lifestyle factors, in combination with

genetics impact age of AD onset. Another limitation is that our PHS may not be able to distin-

guish pure AD from a “mixed dementia” presentation since cerebral small vessel ischemic/

hypertensive pathology often presents concomitantly with AD neurodegeneration, and addi-

tional work will be needed on cohorts with mixed dementia to determine the specificity of our

polygenic score. Finally, we focused on APOE and GWAS-detected polymorphisms for disease

prediction. Given the flexibility of our genetic epidemiology framework, it can be used to

investigate whether a combination of common and rare genetic variants along with clinical,

cognitive, and imaging biomarkers may prove useful for refining the prediction of age of AD

onset.

In conclusion, by integrating population-based incidence proportion and genome-wide

data into a genetic epidemiology framework, we have developed a PHS for quantifying the

age-associated risk for developing AD. Measures of polygenic variation may prove useful for

stratifying AD risk and as an enrichment strategy in clinical trials.
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